|
|
@ -157,20 +157,23 @@ class VAEEncodeForInpaint:
|
|
|
|
def encode(self, vae, pixels, mask):
|
|
|
|
def encode(self, vae, pixels, mask):
|
|
|
|
x = (pixels.shape[1] // 64) * 64
|
|
|
|
x = (pixels.shape[1] // 64) * 64
|
|
|
|
y = (pixels.shape[2] // 64) * 64
|
|
|
|
y = (pixels.shape[2] // 64) * 64
|
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate(mask[None,None,], size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")[0][0]
|
|
|
|
|
|
|
|
|
|
|
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
|
|
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
|
|
|
pixels = pixels[:,:x,:y,:]
|
|
|
|
pixels = pixels[:,:x,:y,:]
|
|
|
|
mask = mask[:x,:y]
|
|
|
|
mask = mask[:x,:y]
|
|
|
|
|
|
|
|
|
|
|
|
#shave off a few pixels to keep things seamless
|
|
|
|
#grow mask by a few pixels to keep things seamless in latent space
|
|
|
|
kernel_tensor = torch.ones((1, 1, 6, 6))
|
|
|
|
kernel_tensor = torch.ones((1, 1, 6, 6))
|
|
|
|
mask_erosion = torch.clamp(torch.nn.functional.conv2d((1.0 - mask.round())[None], kernel_tensor, padding=3), 0, 1)
|
|
|
|
mask_erosion = torch.clamp(torch.nn.functional.conv2d((mask.round())[None], kernel_tensor, padding=3), 0, 1)
|
|
|
|
|
|
|
|
m = (1.0 - mask.round())
|
|
|
|
for i in range(3):
|
|
|
|
for i in range(3):
|
|
|
|
pixels[:,:,:,i] -= 0.5
|
|
|
|
pixels[:,:,:,i] -= 0.5
|
|
|
|
pixels[:,:,:,i] *= mask_erosion[0][:x,:y].round()
|
|
|
|
pixels[:,:,:,i] *= m
|
|
|
|
pixels[:,:,:,i] += 0.5
|
|
|
|
pixels[:,:,:,i] += 0.5
|
|
|
|
t = vae.encode(pixels)
|
|
|
|
t = vae.encode(pixels)
|
|
|
|
|
|
|
|
|
|
|
|
return ({"samples":t, "noise_mask": mask}, )
|
|
|
|
return ({"samples":t, "noise_mask": (mask_erosion[0][:x,:y].round())}, )
|
|
|
|
|
|
|
|
|
|
|
|
class CheckpointLoader:
|
|
|
|
class CheckpointLoader:
|
|
|
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
|
|
|
models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
|
|
|