|
|
|
@ -6,6 +6,8 @@ from comfy import model_management
|
|
|
|
|
import math
|
|
|
|
|
import logging
|
|
|
|
|
import comfy.sampler_helpers
|
|
|
|
|
import scipy
|
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
|
|
def get_area_and_mult(conds, x_in, timestep_in):
|
|
|
|
|
dims = tuple(x_in.shape[2:])
|
|
|
|
@ -337,6 +339,18 @@ def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
|
|
|
|
|
sigs += [0.0]
|
|
|
|
|
return torch.FloatTensor(sigs)
|
|
|
|
|
|
|
|
|
|
# Implemented based on: https://arxiv.org/abs/2407.12173
|
|
|
|
|
def beta_scheduler(model_sampling, steps, alpha=0.6, beta=0.6):
|
|
|
|
|
total_timesteps = (len(model_sampling.sigmas) - 1)
|
|
|
|
|
ts = 1 - numpy.linspace(0, 1, steps, endpoint=False)
|
|
|
|
|
ts = numpy.rint(scipy.stats.beta.ppf(ts, alpha, beta) * total_timesteps)
|
|
|
|
|
|
|
|
|
|
sigs = []
|
|
|
|
|
for t in ts:
|
|
|
|
|
sigs += [float(model_sampling.sigmas[int(t)])]
|
|
|
|
|
sigs += [0.0]
|
|
|
|
|
return torch.FloatTensor(sigs)
|
|
|
|
|
|
|
|
|
|
def get_mask_aabb(masks):
|
|
|
|
|
if masks.numel() == 0:
|
|
|
|
|
return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
|
|
|
|
@ -703,7 +717,7 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
|
|
|
|
|
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"]
|
|
|
|
|
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta"]
|
|
|
|
|
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
|
|
|
|
|
|
|
|
|
|
def calculate_sigmas(model_sampling, scheduler_name, steps):
|
|
|
|
@ -719,6 +733,8 @@ def calculate_sigmas(model_sampling, scheduler_name, steps):
|
|
|
|
|
sigmas = ddim_scheduler(model_sampling, steps)
|
|
|
|
|
elif scheduler_name == "sgm_uniform":
|
|
|
|
|
sigmas = normal_scheduler(model_sampling, steps, sgm=True)
|
|
|
|
|
elif scheduler_name == "beta":
|
|
|
|
|
sigmas = beta_scheduler(model_sampling, steps)
|
|
|
|
|
else:
|
|
|
|
|
logging.error("error invalid scheduler {}".format(scheduler_name))
|
|
|
|
|
return sigmas
|
|
|
|
|