|
|
@ -164,7 +164,6 @@ class SDXLRefiner(BaseModel):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
aesthetic_score = kwargs.get("aesthetic_score", 6)
|
|
|
|
aesthetic_score = kwargs.get("aesthetic_score", 6)
|
|
|
|
|
|
|
|
|
|
|
|
print(clip_pooled.shape, width, height, crop_w, crop_h, aesthetic_score)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
out = []
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
@ -188,7 +187,6 @@ class SDXL(BaseModel):
|
|
|
|
target_width = kwargs.get("target_width", width)
|
|
|
|
target_width = kwargs.get("target_width", width)
|
|
|
|
target_height = kwargs.get("target_height", height)
|
|
|
|
target_height = kwargs.get("target_height", height)
|
|
|
|
|
|
|
|
|
|
|
|
print(clip_pooled.shape, width, height, crop_w, crop_h, target_width, target_height)
|
|
|
|
|
|
|
|
out = []
|
|
|
|
out = []
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([height])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
|
out.append(self.embedder(torch.Tensor([width])))
|
|
|
|