|
|
|
@ -18,10 +18,17 @@ total_vram = 0
|
|
|
|
|
total_vram_available_mb = -1
|
|
|
|
|
|
|
|
|
|
accelerate_enabled = False
|
|
|
|
|
xpu_available = False
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
import torch
|
|
|
|
|
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
|
|
|
|
|
try:
|
|
|
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
|
if torch.xpu.is_available():
|
|
|
|
|
xpu_available = True
|
|
|
|
|
total_vram = torch.xpu.get_device_properties(torch.xpu.current_device()).total_memory / (1024 * 1024)
|
|
|
|
|
except:
|
|
|
|
|
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
|
|
|
|
|
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
|
|
|
|
if not args.normalvram and not args.cpu:
|
|
|
|
|
if total_vram <= 4096:
|
|
|
|
@ -122,6 +129,7 @@ def load_model_gpu(model):
|
|
|
|
|
global current_loaded_model
|
|
|
|
|
global vram_state
|
|
|
|
|
global model_accelerated
|
|
|
|
|
global xpu_available
|
|
|
|
|
|
|
|
|
|
if model is current_loaded_model:
|
|
|
|
|
return
|
|
|
|
@ -140,14 +148,17 @@ def load_model_gpu(model):
|
|
|
|
|
pass
|
|
|
|
|
elif vram_state == VRAMState.NORMAL_VRAM or vram_state == VRAMState.HIGH_VRAM:
|
|
|
|
|
model_accelerated = False
|
|
|
|
|
real_model.cuda()
|
|
|
|
|
if xpu_available:
|
|
|
|
|
real_model.to("xpu")
|
|
|
|
|
else:
|
|
|
|
|
real_model.cuda()
|
|
|
|
|
else:
|
|
|
|
|
if vram_state == VRAMState.NO_VRAM:
|
|
|
|
|
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
|
|
|
|
|
elif vram_state == VRAMState.LOW_VRAM:
|
|
|
|
|
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
|
|
|
|
|
|
|
|
|
|
accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
|
|
|
|
|
accelerate.dispatch_model(real_model, device_map=device_map, main_device="xpu" if xpu_available else "cuda")
|
|
|
|
|
model_accelerated = True
|
|
|
|
|
return current_loaded_model
|
|
|
|
|
|
|
|
|
@ -173,8 +184,12 @@ def load_controlnet_gpu(models):
|
|
|
|
|
|
|
|
|
|
def load_if_low_vram(model):
|
|
|
|
|
global vram_state
|
|
|
|
|
global xpu_available
|
|
|
|
|
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
|
|
|
|
|
return model.cuda()
|
|
|
|
|
if xpu_available:
|
|
|
|
|
return model.to("xpu")
|
|
|
|
|
else:
|
|
|
|
|
return model.cuda()
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
def unload_if_low_vram(model):
|
|
|
|
@ -184,12 +199,16 @@ def unload_if_low_vram(model):
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
def get_torch_device():
|
|
|
|
|
global xpu_available
|
|
|
|
|
if vram_state == VRAMState.MPS:
|
|
|
|
|
return torch.device("mps")
|
|
|
|
|
if vram_state == VRAMState.CPU:
|
|
|
|
|
return torch.device("cpu")
|
|
|
|
|
else:
|
|
|
|
|
return torch.cuda.current_device()
|
|
|
|
|
if xpu_available:
|
|
|
|
|
return torch.device("xpu")
|
|
|
|
|
else:
|
|
|
|
|
return torch.cuda.current_device()
|
|
|
|
|
|
|
|
|
|
def get_autocast_device(dev):
|
|
|
|
|
if hasattr(dev, 'type'):
|
|
|
|
@ -219,6 +238,7 @@ def pytorch_attention_enabled():
|
|
|
|
|
return ENABLE_PYTORCH_ATTENTION
|
|
|
|
|
|
|
|
|
|
def get_free_memory(dev=None, torch_free_too=False):
|
|
|
|
|
global xpu_available
|
|
|
|
|
if dev is None:
|
|
|
|
|
dev = get_torch_device()
|
|
|
|
|
|
|
|
|
@ -226,12 +246,16 @@ def get_free_memory(dev=None, torch_free_too=False):
|
|
|
|
|
mem_free_total = psutil.virtual_memory().available
|
|
|
|
|
mem_free_torch = mem_free_total
|
|
|
|
|
else:
|
|
|
|
|
stats = torch.cuda.memory_stats(dev)
|
|
|
|
|
mem_active = stats['active_bytes.all.current']
|
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
|
|
|
|
mem_free_torch = mem_reserved - mem_active
|
|
|
|
|
mem_free_total = mem_free_cuda + mem_free_torch
|
|
|
|
|
if xpu_available:
|
|
|
|
|
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
|
|
|
|
|
mem_free_torch = mem_free_total
|
|
|
|
|
else:
|
|
|
|
|
stats = torch.cuda.memory_stats(dev)
|
|
|
|
|
mem_active = stats['active_bytes.all.current']
|
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
|
|
|
|
mem_free_torch = mem_reserved - mem_active
|
|
|
|
|
mem_free_total = mem_free_cuda + mem_free_torch
|
|
|
|
|
|
|
|
|
|
if torch_free_too:
|
|
|
|
|
return (mem_free_total, mem_free_torch)
|
|
|
|
@ -256,7 +280,8 @@ def mps_mode():
|
|
|
|
|
return vram_state == VRAMState.MPS
|
|
|
|
|
|
|
|
|
|
def should_use_fp16():
|
|
|
|
|
if cpu_mode() or mps_mode():
|
|
|
|
|
global xpu_available
|
|
|
|
|
if cpu_mode() or mps_mode() or xpu_available:
|
|
|
|
|
return False #TODO ?
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_bf16_supported():
|
|
|
|
|