You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
8.9 KiB
Python

import math
from einops import rearrange, repeat
import torch
from torch import nn
from torch.nn import functional as F
from . import utils
# Karras et al. preconditioned denoiser
class Denoiser(nn.Module):
"""A Karras et al. preconditioner for denoising diffusion models."""
def __init__(self, inner_model, sigma_data=1.):
super().__init__()
self.inner_model = inner_model
self.sigma_data = sigma_data
def get_scalings(self, sigma):
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
c_out = sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
return c_skip, c_out, c_in
def loss(self, input, noise, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
model_output = self.inner_model(noised_input * c_in, sigma, **kwargs)
target = (input - c_skip * noised_input) / c_out
return (model_output - target).pow(2).flatten(1).mean(1)
def forward(self, input, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
return self.inner_model(input * c_in, sigma, **kwargs) * c_out + input * c_skip
class DenoiserWithVariance(Denoiser):
def loss(self, input, noise, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
model_output, logvar = self.inner_model(noised_input * c_in, sigma, return_variance=True, **kwargs)
logvar = utils.append_dims(logvar, model_output.ndim)
target = (input - c_skip * noised_input) / c_out
losses = ((model_output - target) ** 2 / logvar.exp() + logvar) / 2
return losses.flatten(1).mean(1)
# Residual blocks
class ResidualBlock(nn.Module):
def __init__(self, *main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input):
return self.main(input) + self.skip(input)
# Noise level (and other) conditioning
class ConditionedModule(nn.Module):
pass
class UnconditionedModule(ConditionedModule):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, input, cond=None):
return self.module(input)
class ConditionedSequential(nn.Sequential, ConditionedModule):
def forward(self, input, cond):
for module in self:
if isinstance(module, ConditionedModule):
input = module(input, cond)
else:
input = module(input)
return input
class ConditionedResidualBlock(ConditionedModule):
def __init__(self, *main, skip=None):
super().__init__()
self.main = ConditionedSequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input, cond):
skip = self.skip(input, cond) if isinstance(self.skip, ConditionedModule) else self.skip(input)
return self.main(input, cond) + skip
class AdaGN(ConditionedModule):
def __init__(self, feats_in, c_out, num_groups, eps=1e-5, cond_key='cond'):
super().__init__()
self.num_groups = num_groups
self.eps = eps
self.cond_key = cond_key
self.mapper = nn.Linear(feats_in, c_out * 2)
def forward(self, input, cond):
weight, bias = self.mapper(cond[self.cond_key]).chunk(2, dim=-1)
input = F.group_norm(input, self.num_groups, eps=self.eps)
return torch.addcmul(utils.append_dims(bias, input.ndim), input, utils.append_dims(weight, input.ndim) + 1)
# Attention
class SelfAttention2d(ConditionedModule):
def __init__(self, c_in, n_head, norm, dropout_rate=0.):
super().__init__()
assert c_in % n_head == 0
self.norm_in = norm(c_in)
self.n_head = n_head
self.qkv_proj = nn.Conv2d(c_in, c_in * 3, 1)
self.out_proj = nn.Conv2d(c_in, c_in, 1)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input, cond):
n, c, h, w = input.shape
qkv = self.qkv_proj(self.norm_in(input, cond))
qkv = qkv.view([n, self.n_head * 3, c // self.n_head, h * w]).transpose(2, 3)
q, k, v = qkv.chunk(3, dim=1)
scale = k.shape[3] ** -0.25
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
att = self.dropout(att)
y = (att @ v).transpose(2, 3).contiguous().view([n, c, h, w])
return input + self.out_proj(y)
class CrossAttention2d(ConditionedModule):
def __init__(self, c_dec, c_enc, n_head, norm_dec, dropout_rate=0.,
cond_key='cross', cond_key_padding='cross_padding'):
super().__init__()
assert c_dec % n_head == 0
self.cond_key = cond_key
self.cond_key_padding = cond_key_padding
self.norm_enc = nn.LayerNorm(c_enc)
self.norm_dec = norm_dec(c_dec)
self.n_head = n_head
self.q_proj = nn.Conv2d(c_dec, c_dec, 1)
self.kv_proj = nn.Linear(c_enc, c_dec * 2)
self.out_proj = nn.Conv2d(c_dec, c_dec, 1)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input, cond):
n, c, h, w = input.shape
q = self.q_proj(self.norm_dec(input, cond))
q = q.view([n, self.n_head, c // self.n_head, h * w]).transpose(2, 3)
kv = self.kv_proj(self.norm_enc(cond[self.cond_key]))
kv = kv.view([n, -1, self.n_head * 2, c // self.n_head]).transpose(1, 2)
k, v = kv.chunk(2, dim=1)
scale = k.shape[3] ** -0.25
att = ((q * scale) @ (k.transpose(2, 3) * scale))
att = att - (cond[self.cond_key_padding][:, None, None, :]) * 10000
att = att.softmax(3)
att = self.dropout(att)
y = (att @ v).transpose(2, 3)
y = y.contiguous().view([n, c, h, w])
return input + self.out_proj(y)
# Downsampling/upsampling
_kernels = {
'linear':
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
'cubic':
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
0.43359375, 0.11328125, -0.03515625, -0.01171875],
'lanczos3':
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
}
_kernels['bilinear'] = _kernels['linear']
_kernels['bicubic'] = _kernels['cubic']
class Downsample2d(nn.Module):
def __init__(self, kernel='linear', pad_mode='reflect'):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([_kernels[kernel]])
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer('kernel', kernel_1d.T @ kernel_1d)
def forward(self, x):
x = F.pad(x, (self.pad,) * 4, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
return F.conv2d(x, weight, stride=2)
class Upsample2d(nn.Module):
def __init__(self, kernel='linear', pad_mode='reflect'):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([_kernels[kernel]]) * 2
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer('kernel', kernel_1d.T @ kernel_1d)
def forward(self, x):
x = F.pad(x, ((self.pad + 1) // 2,) * 4, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
return F.conv_transpose2d(x, weight, stride=2, padding=self.pad * 2 + 1)
# Embeddings
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.register_buffer('weight', torch.randn([out_features // 2, in_features]) * std)
def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)
# U-Nets
class UNet(ConditionedModule):
def __init__(self, d_blocks, u_blocks, skip_stages=0):
super().__init__()
self.d_blocks = nn.ModuleList(d_blocks)
self.u_blocks = nn.ModuleList(u_blocks)
self.skip_stages = skip_stages
def forward(self, input, cond):
skips = []
for block in self.d_blocks[self.skip_stages:]:
input = block(input, cond)
skips.append(input)
for i, (block, skip) in enumerate(zip(self.u_blocks, reversed(skips))):
input = block(input, cond, skip if i > 0 else None)
return input