Support other types of T5 models.

main
comfyanonymous 8 months ago
parent 4040491149
commit ff63893d10

@ -190,11 +190,11 @@ class T5Block(torch.nn.Module):
return x, past_bias
class T5Stack(torch.nn.Module):
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, dtype, device, operations):
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention, dtype, device, operations):
super().__init__()
self.block = torch.nn.ModuleList(
[T5Block(model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device, operations=operations) for i in range(num_layers)]
[T5Block(model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias=((not relative_attention) or (i == 0)), dtype=dtype, device=device, operations=operations) for i in range(num_layers)]
)
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
@ -223,7 +223,7 @@ class T5(torch.nn.Module):
self.num_layers = config_dict["num_layers"]
model_dim = config_dict["d_model"]
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], dtype, device, operations)
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] == "t5", dtype, device, operations)
self.dtype = dtype
self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device)

Loading…
Cancel
Save