Cleaner CLIP text encoder implementation.
Use a simple CLIP model implementation instead of the one from transformers. This will allow some interesting things that would too hackish to implement using the transformers implementation.main
parent
2db86b4676
commit
fbdb14d4c4
@ -0,0 +1,126 @@
|
||||
import torch
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
|
||||
class CLIPAttention(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, dtype, device, operations):
|
||||
super().__init__()
|
||||
|
||||
self.heads = heads
|
||||
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
q = self.q_proj(x)
|
||||
k = self.k_proj(x)
|
||||
v = self.v_proj(x)
|
||||
|
||||
out = optimized_attention(q, k, v, self.heads, mask)
|
||||
return self.out_proj(out)
|
||||
|
||||
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
||||
"gelu": torch.nn.functional.gelu,
|
||||
}
|
||||
|
||||
class CLIPMLP(torch.nn.Module):
|
||||
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
||||
self.activation = ACTIVATIONS[activation]
|
||||
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.activation(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
class CLIPLayer(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
||||
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask=None, optimized_attention=None):
|
||||
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
||||
x += self.mlp(self.layer_norm2(x))
|
||||
return x
|
||||
|
||||
|
||||
class CLIPEncoder(torch.nn.Module):
|
||||
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
||||
|
||||
def forward(self, x, mask=None, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, mask=True)
|
||||
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
||||
if mask is not None:
|
||||
mask += causal_mask
|
||||
else:
|
||||
mask = causal_mask
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layers) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layers):
|
||||
x = l(x, mask, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
class CLIPEmbeddings(torch.nn.Module):
|
||||
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
||||
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens):
|
||||
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
||||
|
||||
|
||||
class CLIPTextModel_(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
num_layers = config_dict["num_hidden_layers"]
|
||||
embed_dim = config_dict["hidden_size"]
|
||||
heads = config_dict["num_attention_heads"]
|
||||
intermediate_size = config_dict["intermediate_size"]
|
||||
intermediate_activation = config_dict["hidden_act"]
|
||||
|
||||
super().__init__()
|
||||
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
|
||||
x = self.embeddings(input_tokens)
|
||||
#TODO: attention_mask
|
||||
x, i = self.encoder(x, intermediate_output=intermediate_output)
|
||||
x = self.final_layer_norm(x)
|
||||
if i is not None and final_layer_norm_intermediate:
|
||||
i = self.final_layer_norm(i)
|
||||
|
||||
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
|
||||
return x, i, pooled_output
|
||||
|
||||
class CLIPTextModel(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.num_layers = config_dict["num_hidden_layers"]
|
||||
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
||||
self.dtype = dtype
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.text_model.embeddings.token_embedding
|
||||
|
||||
def set_input_embeddings(self, embeddings):
|
||||
self.text_model.embeddings.token_embedding = embeddings
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.text_model(*args, **kwargs)
|
Loading…
Reference in New Issue