Make some cross attention functions work on the CPU.

main
comfyanonymous 2 years ago
parent 1a612e1c74
commit c1f5855ac1

@ -9,6 +9,8 @@ from typing import Optional, Any
from ldm.modules.diffusionmodules.util import checkpoint
from .sub_quadratic_attention import efficient_dot_product_attention
import model_management
try:
import xformers
import xformers.ops
@ -189,12 +191,8 @@ class CrossAttentionBirchSan(nn.Module):
_, _, k_tokens = key_t.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
stats = torch.cuda.memory_stats(query.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
chunk_threshold_bytes = mem_free_torch * 0.5 #Using only this seems to work better on AMD
kv_chunk_size_min = None
@ -276,12 +274,7 @@ class CrossAttentionDoggettx(nn.Module):
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
mem_free_total = model_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()

@ -145,14 +145,25 @@ def unload_if_low_vram(model):
return model
def get_free_memory():
dev = torch.cuda.current_device()
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
return mem_free_cuda + mem_free_torch
def get_free_memory(dev=None, torch_free_too=False):
if dev is None:
dev = torch.cuda.current_device()
if hasattr(dev, 'type') and dev.type == 'cpu':
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def maximum_batch_area():
global vram_state

Loading…
Cancel
Save