|
|
|
@ -56,35 +56,42 @@ def bislerp(samples, width, height):
|
|
|
|
|
shape[2] = height
|
|
|
|
|
out1 = torch.empty(shape, dtype=samples.dtype, layout=samples.layout, device=samples.device)
|
|
|
|
|
|
|
|
|
|
def algorithm(in1, w1, in2, w2):
|
|
|
|
|
def algorithm(in1, in2, t):
|
|
|
|
|
dims = in1.shape
|
|
|
|
|
val = w2
|
|
|
|
|
val = t
|
|
|
|
|
|
|
|
|
|
#flatten to batches
|
|
|
|
|
low = in1.reshape(dims[0], -1)
|
|
|
|
|
high = in2.reshape(dims[0], -1)
|
|
|
|
|
|
|
|
|
|
low_norm = low/torch.norm(low, dim=1, keepdim=True)
|
|
|
|
|
high_norm = high/torch.norm(high, dim=1, keepdim=True)
|
|
|
|
|
|
|
|
|
|
# in case we divide by zero
|
|
|
|
|
low_norm[low_norm != low_norm] = 0.0
|
|
|
|
|
high_norm[high_norm != high_norm] = 0.0
|
|
|
|
|
|
|
|
|
|
omega = torch.acos((low_norm*high_norm).sum(1))
|
|
|
|
|
low_weight = torch.norm(low, dim=1, keepdim=True)
|
|
|
|
|
low_weight[low_weight == 0] = 0.0000000001
|
|
|
|
|
low_norm = low/low_weight
|
|
|
|
|
high_weight = torch.norm(high, dim=1, keepdim=True)
|
|
|
|
|
high_weight[high_weight == 0] = 0.0000000001
|
|
|
|
|
high_norm = high/high_weight
|
|
|
|
|
|
|
|
|
|
dot_prod = (low_norm*high_norm).sum(1)
|
|
|
|
|
dot_prod[dot_prod > 0.9995] = 0.9995
|
|
|
|
|
dot_prod[dot_prod < -0.9995] = -0.9995
|
|
|
|
|
omega = torch.acos(dot_prod)
|
|
|
|
|
so = torch.sin(omega)
|
|
|
|
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
|
|
|
|
|
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low_norm + (torch.sin(val*omega)/so).unsqueeze(1) * high_norm
|
|
|
|
|
res *= (low_weight * (1.0-val) + high_weight * val)
|
|
|
|
|
return res.reshape(dims)
|
|
|
|
|
|
|
|
|
|
for x_dest in range(shape[3]):
|
|
|
|
|
for y_dest in range(shape[2]):
|
|
|
|
|
y = (y_dest) * height_scale
|
|
|
|
|
x = (x_dest) * width_scale
|
|
|
|
|
y = (y_dest + 0.5) * height_scale - 0.5
|
|
|
|
|
x = (x_dest + 0.5) * width_scale - 0.5
|
|
|
|
|
|
|
|
|
|
x1 = max(math.floor(x), 0)
|
|
|
|
|
x2 = min(x1 + 1, samples.shape[3] - 1)
|
|
|
|
|
wx = x - math.floor(x)
|
|
|
|
|
|
|
|
|
|
y1 = max(math.floor(y), 0)
|
|
|
|
|
y2 = min(y1 + 1, samples.shape[2] - 1)
|
|
|
|
|
wy = y - math.floor(y)
|
|
|
|
|
|
|
|
|
|
in1 = samples[:,:,y1,x1]
|
|
|
|
|
in2 = samples[:,:,y1,x2]
|
|
|
|
@ -94,13 +101,13 @@ def bislerp(samples, width, height):
|
|
|
|
|
if (x1 == x2) and (y1 == y2):
|
|
|
|
|
out_value = in1
|
|
|
|
|
elif (x1 == x2):
|
|
|
|
|
out_value = algorithm(in1, (y2 - y), in3, (y - y1))
|
|
|
|
|
out_value = algorithm(in1, in3, wy)
|
|
|
|
|
elif (y1 == y2):
|
|
|
|
|
out_value = algorithm(in1, (x2 - x), in2, (x - x1))
|
|
|
|
|
out_value = algorithm(in1, in2, wx)
|
|
|
|
|
else:
|
|
|
|
|
o1 = algorithm(in1, (x2 - x), in2, (x - x1))
|
|
|
|
|
o2 = algorithm(in3, (x2 - x), in4, (x - x1))
|
|
|
|
|
out_value = algorithm(o1, (y2 - y), o2, (y - y1))
|
|
|
|
|
o1 = algorithm(in1, in2, wx)
|
|
|
|
|
o2 = algorithm(in3, in4, wx)
|
|
|
|
|
out_value = algorithm(o1, o2, wy)
|
|
|
|
|
|
|
|
|
|
out1[:,:,y_dest,x_dest] = out_value
|
|
|
|
|
return out1
|
|
|
|
|