|
|
|
@ -15,6 +15,7 @@ sys.path.append(os.path.join(sys.path[0], "comfy"))
|
|
|
|
|
|
|
|
|
|
import comfy.samplers
|
|
|
|
|
import comfy.sd
|
|
|
|
|
import model_management
|
|
|
|
|
|
|
|
|
|
supported_ckpt_extensions = ['.ckpt']
|
|
|
|
|
supported_pt_extensions = ['.ckpt', '.pt', '.bin']
|
|
|
|
@ -353,43 +354,39 @@ def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, po
|
|
|
|
|
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")
|
|
|
|
|
|
|
|
|
|
real_model = None
|
|
|
|
|
try:
|
|
|
|
|
if device != "cpu":
|
|
|
|
|
model_management.load_model_gpu(model)
|
|
|
|
|
real_model = model.model
|
|
|
|
|
else:
|
|
|
|
|
#TODO: cpu support
|
|
|
|
|
real_model = model.patch_model()
|
|
|
|
|
real_model.to(device)
|
|
|
|
|
noise = noise.to(device)
|
|
|
|
|
latent_image = latent_image.to(device)
|
|
|
|
|
|
|
|
|
|
positive_copy = []
|
|
|
|
|
negative_copy = []
|
|
|
|
|
|
|
|
|
|
for p in positive:
|
|
|
|
|
t = p[0]
|
|
|
|
|
if t.shape[0] < noise.shape[0]:
|
|
|
|
|
t = torch.cat([t] * noise.shape[0])
|
|
|
|
|
t = t.to(device)
|
|
|
|
|
positive_copy += [[t] + p[1:]]
|
|
|
|
|
for n in negative:
|
|
|
|
|
t = n[0]
|
|
|
|
|
if t.shape[0] < noise.shape[0]:
|
|
|
|
|
t = torch.cat([t] * noise.shape[0])
|
|
|
|
|
t = t.to(device)
|
|
|
|
|
negative_copy += [[t] + n[1:]]
|
|
|
|
|
|
|
|
|
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
|
|
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
|
|
|
|
|
else:
|
|
|
|
|
#other samplers
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise)
|
|
|
|
|
samples = samples.cpu()
|
|
|
|
|
real_model.cpu()
|
|
|
|
|
model.unpatch_model()
|
|
|
|
|
except Exception as e:
|
|
|
|
|
if real_model is not None:
|
|
|
|
|
real_model.cpu()
|
|
|
|
|
model.unpatch_model()
|
|
|
|
|
raise e
|
|
|
|
|
noise = noise.to(device)
|
|
|
|
|
latent_image = latent_image.to(device)
|
|
|
|
|
|
|
|
|
|
positive_copy = []
|
|
|
|
|
negative_copy = []
|
|
|
|
|
|
|
|
|
|
for p in positive:
|
|
|
|
|
t = p[0]
|
|
|
|
|
if t.shape[0] < noise.shape[0]:
|
|
|
|
|
t = torch.cat([t] * noise.shape[0])
|
|
|
|
|
t = t.to(device)
|
|
|
|
|
positive_copy += [[t] + p[1:]]
|
|
|
|
|
for n in negative:
|
|
|
|
|
t = n[0]
|
|
|
|
|
if t.shape[0] < noise.shape[0]:
|
|
|
|
|
t = torch.cat([t] * noise.shape[0])
|
|
|
|
|
t = t.to(device)
|
|
|
|
|
negative_copy += [[t] + n[1:]]
|
|
|
|
|
|
|
|
|
|
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
|
|
|
|
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
|
|
|
|
|
else:
|
|
|
|
|
#other samplers
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise)
|
|
|
|
|
samples = samples.cpu()
|
|
|
|
|
|
|
|
|
|
return (samples, )
|
|
|
|
|
|
|
|
|
|