Add support for the stable diffusion x4 upscaling model.
This is an old model. Load the checkpoint like a regular one and use the new SD_4XUpscale_Conditioning node.main
parent
2c4e92a98b
commit
a7874d1a8b
@ -0,0 +1,45 @@
|
||||
import torch
|
||||
import nodes
|
||||
import comfy.utils
|
||||
|
||||
class SD_4XUpscale_Conditioning:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "images": ("IMAGE",),
|
||||
"positive": ("CONDITIONING",),
|
||||
"negative": ("CONDITIONING",),
|
||||
"scale_ratio": ("FLOAT", {"default": 4.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||
# "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}), #TODO
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
||||
RETURN_NAMES = ("positive", "negative", "latent")
|
||||
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/upscale_diffusion"
|
||||
|
||||
def encode(self, images, positive, negative, scale_ratio):
|
||||
width = max(1, round(images.shape[-2] * scale_ratio))
|
||||
height = max(1, round(images.shape[-3] * scale_ratio))
|
||||
|
||||
pixels = comfy.utils.common_upscale((images.movedim(-1,1) * 2.0) - 1.0, width // 4, height // 4, "bilinear", "center")
|
||||
|
||||
out_cp = []
|
||||
out_cn = []
|
||||
|
||||
for t in positive:
|
||||
n = [t[0], t[1].copy()]
|
||||
n[1]['concat_image'] = pixels
|
||||
out_cp.append(n)
|
||||
|
||||
for t in negative:
|
||||
n = [t[0], t[1].copy()]
|
||||
n[1]['concat_image'] = pixels
|
||||
out_cn.append(n)
|
||||
|
||||
latent = torch.zeros([images.shape[0], 4, height // 4, width // 4])
|
||||
return (out_cp, out_cn, {"samples":latent})
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"SD_4XUpscale_Conditioning": SD_4XUpscale_Conditioning,
|
||||
}
|
Loading…
Reference in New Issue