|
|
|
@ -9,7 +9,7 @@ import math
|
|
|
|
|
import time
|
|
|
|
|
import random
|
|
|
|
|
|
|
|
|
|
from PIL import Image, ImageOps
|
|
|
|
|
from PIL import Image, ImageOps, ImageSequence
|
|
|
|
|
from PIL.PngImagePlugin import PngInfo
|
|
|
|
|
import numpy as np
|
|
|
|
|
import safetensors.torch
|
|
|
|
@ -1410,17 +1410,30 @@ class LoadImage:
|
|
|
|
|
FUNCTION = "load_image"
|
|
|
|
|
def load_image(self, image):
|
|
|
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
|
|
|
i = Image.open(image_path)
|
|
|
|
|
i = ImageOps.exif_transpose(i)
|
|
|
|
|
image = i.convert("RGB")
|
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
|
|
image = torch.from_numpy(image)[None,]
|
|
|
|
|
if 'A' in i.getbands():
|
|
|
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
|
|
|
mask = 1. - torch.from_numpy(mask)
|
|
|
|
|
img = Image.open(image_path)
|
|
|
|
|
output_images = []
|
|
|
|
|
output_masks = []
|
|
|
|
|
for i in ImageSequence.Iterator(img):
|
|
|
|
|
i = ImageOps.exif_transpose(i)
|
|
|
|
|
image = i.convert("RGB")
|
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
|
|
|
image = torch.from_numpy(image)[None,]
|
|
|
|
|
if 'A' in i.getbands():
|
|
|
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
|
|
|
mask = 1. - torch.from_numpy(mask)
|
|
|
|
|
else:
|
|
|
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
|
|
|
output_images.append(image)
|
|
|
|
|
output_masks.append(mask.unsqueeze(0))
|
|
|
|
|
|
|
|
|
|
if len(output_images) > 1:
|
|
|
|
|
output_image = torch.cat(output_images, dim=0)
|
|
|
|
|
output_mask = torch.cat(output_masks, dim=0)
|
|
|
|
|
else:
|
|
|
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
|
|
|
return (image, mask.unsqueeze(0))
|
|
|
|
|
output_image = output_images[0]
|
|
|
|
|
output_mask = output_masks[0]
|
|
|
|
|
|
|
|
|
|
return (output_image, output_mask)
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def IS_CHANGED(s, image):
|
|
|
|
|