|
|
|
@ -44,8 +44,10 @@ cpu_state = CPUState.GPU
|
|
|
|
|
|
|
|
|
|
total_vram = 0
|
|
|
|
|
|
|
|
|
|
torch_version = torch.version.__version__
|
|
|
|
|
|
|
|
|
|
lowvram_available = True
|
|
|
|
|
xpu_available = False
|
|
|
|
|
xpu_available = int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)
|
|
|
|
|
|
|
|
|
|
if args.deterministic:
|
|
|
|
|
logging.info("Using deterministic algorithms for pytorch")
|
|
|
|
@ -66,10 +68,10 @@ if args.directml is not None:
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
import intel_extension_for_pytorch as ipex
|
|
|
|
|
if torch.xpu.is_available():
|
|
|
|
|
xpu_available = True
|
|
|
|
|
_ = torch.xpu.device_count()
|
|
|
|
|
xpu_available = torch.xpu.is_available()
|
|
|
|
|
except:
|
|
|
|
|
pass
|
|
|
|
|
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
if torch.backends.mps.is_available():
|
|
|
|
@ -189,7 +191,6 @@ VAE_DTYPES = [torch.float32]
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
if is_nvidia():
|
|
|
|
|
torch_version = torch.version.__version__
|
|
|
|
|
if int(torch_version[0]) >= 2:
|
|
|
|
|
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
|
|
|
|
ENABLE_PYTORCH_ATTENTION = True
|
|
|
|
@ -321,8 +322,9 @@ class LoadedModel:
|
|
|
|
|
self.model_unload()
|
|
|
|
|
raise e
|
|
|
|
|
|
|
|
|
|
if is_intel_xpu() and not args.disable_ipex_optimize:
|
|
|
|
|
self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
|
|
|
|
|
if is_intel_xpu() and not args.disable_ipex_optimize and self.real_model is not None:
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
self.real_model = ipex.optimize(self.real_model.eval(), inplace=True, graph_mode=True, concat_linear=True)
|
|
|
|
|
|
|
|
|
|
self.weights_loaded = True
|
|
|
|
|
return self.real_model
|
|
|
|
|