diff --git a/comfy/ldm/modules/diffusionmodules/upscaling.py b/comfy/ldm/modules/diffusionmodules/upscaling.py index 709a7f5..768a47f 100644 --- a/comfy/ldm/modules/diffusionmodules/upscaling.py +++ b/comfy/ldm/modules/diffusionmodules/upscaling.py @@ -43,8 +43,8 @@ class AbstractLowScaleModel(nn.Module): def q_sample(self, x_start, t, noise=None): noise = default(noise, lambda: torch.randn_like(x_start)) - return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) + return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise) def forward(self, x): return x, None diff --git a/comfy/ldm/modules/encoders/noise_aug_modules.py b/comfy/ldm/modules/encoders/noise_aug_modules.py index b59bf20..66767b5 100644 --- a/comfy/ldm/modules/encoders/noise_aug_modules.py +++ b/comfy/ldm/modules/encoders/noise_aug_modules.py @@ -15,12 +15,12 @@ class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation): def scale(self, x): # re-normalize to centered mean and unit variance - x = (x - self.data_mean) * 1. / self.data_std + x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device) return x def unscale(self, x): # back to original data stats - x = (x * self.data_std) + self.data_mean + x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device) return x def forward(self, x, noise_level=None):