|
|
|
@ -29,8 +29,8 @@ class StableZero123_Conditioning:
|
|
|
|
|
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
|
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
|
|
|
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
|
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
|
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
|
|
|
|
|
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
|
|
|
|
|
}}
|
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
|
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
@ -62,10 +62,10 @@ class StableZero123_Conditioning_Batched:
|
|
|
|
|
"width": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
|
"height": ("INT", {"default": 256, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
|
|
|
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
|
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
|
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
|
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0}),
|
|
|
|
|
"elevation": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
|
|
|
|
|
"azimuth": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
|
|
|
|
|
"elevation_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
|
|
|
|
|
"azimuth_batch_increment": ("FLOAT", {"default": 0.0, "min": -180.0, "max": 180.0, "step": 0.1, "round": False}),
|
|
|
|
|
}}
|
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
|
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
@ -95,8 +95,49 @@ class StableZero123_Conditioning_Batched:
|
|
|
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
|
|
|
|
return (positive, negative, {"samples":latent, "batch_index": [0] * batch_size})
|
|
|
|
|
|
|
|
|
|
class SV3D_Conditioning:
|
|
|
|
|
@classmethod
|
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
|
return {"required": { "clip_vision": ("CLIP_VISION",),
|
|
|
|
|
"init_image": ("IMAGE",),
|
|
|
|
|
"vae": ("VAE",),
|
|
|
|
|
"width": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
|
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
|
|
|
|
"video_frames": ("INT", {"default": 21, "min": 1, "max": 4096}),
|
|
|
|
|
"elevation": ("FLOAT", {"default": 0.0, "min": -90.0, "max": 90.0, "step": 0.1, "round": False}),
|
|
|
|
|
}}
|
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
|
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
|
|
|
|
|
|
|
|
FUNCTION = "encode"
|
|
|
|
|
|
|
|
|
|
CATEGORY = "conditioning/3d_models"
|
|
|
|
|
|
|
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, video_frames, elevation):
|
|
|
|
|
output = clip_vision.encode_image(init_image)
|
|
|
|
|
pooled = output.image_embeds.unsqueeze(0)
|
|
|
|
|
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
|
|
|
|
encode_pixels = pixels[:,:,:,:3]
|
|
|
|
|
t = vae.encode(encode_pixels)
|
|
|
|
|
|
|
|
|
|
azimuth = 0
|
|
|
|
|
azimuth_increment = 360 / (max(video_frames, 2) - 1)
|
|
|
|
|
|
|
|
|
|
elevations = []
|
|
|
|
|
azimuths = []
|
|
|
|
|
for i in range(video_frames):
|
|
|
|
|
elevations.append(elevation)
|
|
|
|
|
azimuths.append(azimuth)
|
|
|
|
|
azimuth += azimuth_increment
|
|
|
|
|
|
|
|
|
|
positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]]
|
|
|
|
|
negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t), "elevation": elevations, "azimuth": azimuths}]]
|
|
|
|
|
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
|
|
|
|
|
return (positive, negative, {"samples":latent})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
|
|
"StableZero123_Conditioning": StableZero123_Conditioning,
|
|
|
|
|
"StableZero123_Conditioning_Batched": StableZero123_Conditioning_Batched,
|
|
|
|
|
"SV3D_Conditioning": SV3D_Conditioning,
|
|
|
|
|
}
|
|
|
|
|