diff --git a/comfy/k_diffusion/sampling.py b/comfy/k_diffusion/sampling.py index dd23443..27ca7cc 100644 --- a/comfy/k_diffusion/sampling.py +++ b/comfy/k_diffusion/sampling.py @@ -650,4 +650,78 @@ def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disab noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r) +@torch.no_grad() +def sample_dpmpp_3m(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """DPM-Solver++(3M) without SDE-specific parts.""" + + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + + # Update x using the DPM-Solver++(3M) update rule + t, s = -sigmas[i].log(), -sigmas[i + 1].log() + h = s - t + h_eta = h * (eta + 1) + + x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised + + if eta: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise + + return x + +@torch.no_grad() +def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): + """DPM-Solver++(3M) SDE.""" + + sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max() + noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler + extra_args = {} if extra_args is None else extra_args + s_in = x.new_ones([x.shape[0]]) + + denoised_1, denoised_2 = None, None + h_1, h_2 = None, None + + for i in trange(len(sigmas) - 1, disable=disable): + denoised = model(x, sigmas[i] * s_in, **extra_args) + if callback is not None: + callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) + if sigmas[i + 1] == 0: + # Denoising step + x = denoised + else: + t, s = -sigmas[i].log(), -sigmas[i + 1].log() + h = s - t + h_eta = h * (eta + 1) + + x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised + + if h_2 is not None: + r0 = h_1 / h + r1 = h_2 / h + d1_0 = (denoised - denoised_1) / r0 + d1_1 = (denoised_1 - denoised_2) / r1 + d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1) + d2 = (d1_0 - d1_1) / (r0 + r1) + phi_2 = h_eta.neg().expm1() / h_eta + 1 + phi_3 = phi_2 / h_eta - 0.5 + x = x + phi_2 * d1 - phi_3 * d2 + elif h_1 is not None: + r = h_1 / h + d = (denoised - denoised_1) / r + phi_2 = h_eta.neg().expm1() / h_eta + 1 + x = x + phi_2 * d + + if eta: + x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise + + denoised_1, denoised_2 = denoised, denoised_1 + h_1, h_2 = h, h_1 + return x diff --git a/comfy/samplers.py b/comfy/samplers.py index de4f36d..dc7c3a2 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -528,7 +528,7 @@ class KSampler: SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"] SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", - "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"] + "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m","dpmpp_3m_sde", "ddim", "uni_pc", "uni_pc_bh2"] def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None, model_options={}): self.model = model