|
|
|
@ -114,7 +114,8 @@ def attention_basic(q, k, v, heads, mask=None):
|
|
|
|
|
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
|
|
|
|
sim.masked_fill_(~mask, max_neg_value)
|
|
|
|
|
else:
|
|
|
|
|
sim += mask
|
|
|
|
|
mask = mask.reshape(mask.shape[0], -1, mask.shape[-2], mask.shape[-1]).expand(-1, heads, -1, -1).reshape(sim.shape)
|
|
|
|
|
sim.add_(mask)
|
|
|
|
|
|
|
|
|
|
# attention, what we cannot get enough of
|
|
|
|
|
sim = sim.softmax(dim=-1)
|
|
|
|
@ -165,6 +166,9 @@ def attention_sub_quad(query, key, value, heads, mask=None):
|
|
|
|
|
if query_chunk_size is None:
|
|
|
|
|
query_chunk_size = 512
|
|
|
|
|
|
|
|
|
|
if mask is not None:
|
|
|
|
|
mask = mask.reshape(mask.shape[0], -1, mask.shape[-2], mask.shape[-1]).expand(-1, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
|
|
|
|
|
|
|
|
|
hidden_states = efficient_dot_product_attention(
|
|
|
|
|
query,
|
|
|
|
|
key,
|
|
|
|
@ -223,6 +227,9 @@ def attention_split(q, k, v, heads, mask=None):
|
|
|
|
|
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
|
|
|
|
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
|
|
|
|
|
|
|
|
|
|
if mask is not None:
|
|
|
|
|
mask = mask.reshape(mask.shape[0], -1, mask.shape[-2], mask.shape[-1]).expand(-1, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
|
|
|
|
|
|
|
|
|
|
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
|
|
|
|
|
first_op_done = False
|
|
|
|
|
cleared_cache = False
|
|
|
|
|