|
|
|
@ -88,8 +88,10 @@ def get_total_memory(dev=None, torch_total_too=False):
|
|
|
|
|
mem_total = 1024 * 1024 * 1024 #TODO
|
|
|
|
|
mem_total_torch = mem_total
|
|
|
|
|
elif xpu_available:
|
|
|
|
|
stats = torch.xpu.memory_stats(dev)
|
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
|
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
|
|
|
|
mem_total_torch = mem_total
|
|
|
|
|
mem_total_torch = mem_reserved
|
|
|
|
|
else:
|
|
|
|
|
stats = torch.cuda.memory_stats(dev)
|
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
@ -208,6 +210,7 @@ if DISABLE_SMART_MEMORY:
|
|
|
|
|
print("Disabling smart memory management")
|
|
|
|
|
|
|
|
|
|
def get_torch_device_name(device):
|
|
|
|
|
global xpu_available
|
|
|
|
|
if hasattr(device, 'type'):
|
|
|
|
|
if device.type == "cuda":
|
|
|
|
|
try:
|
|
|
|
@ -217,6 +220,8 @@ def get_torch_device_name(device):
|
|
|
|
|
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
|
|
|
|
|
else:
|
|
|
|
|
return "{}".format(device.type)
|
|
|
|
|
elif xpu_available:
|
|
|
|
|
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
|
|
|
|
else:
|
|
|
|
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
|
|
|
|
|
|
|
|
@ -244,6 +249,7 @@ class LoadedModel:
|
|
|
|
|
return self.model_memory()
|
|
|
|
|
|
|
|
|
|
def model_load(self, lowvram_model_memory=0):
|
|
|
|
|
global xpu_available
|
|
|
|
|
patch_model_to = None
|
|
|
|
|
if lowvram_model_memory == 0:
|
|
|
|
|
patch_model_to = self.device
|
|
|
|
@ -264,6 +270,10 @@ class LoadedModel:
|
|
|
|
|
accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
|
|
|
|
|
self.model_accelerated = True
|
|
|
|
|
|
|
|
|
|
if xpu_available and not args.disable_ipex_optimize:
|
|
|
|
|
self.real_model.training = False
|
|
|
|
|
self.real_model = torch.xpu.optimize(self.real_model, inplace=True)
|
|
|
|
|
|
|
|
|
|
return self.real_model
|
|
|
|
|
|
|
|
|
|
def model_unload(self):
|
|
|
|
@ -500,8 +510,12 @@ def get_free_memory(dev=None, torch_free_too=False):
|
|
|
|
|
mem_free_total = 1024 * 1024 * 1024 #TODO
|
|
|
|
|
mem_free_torch = mem_free_total
|
|
|
|
|
elif xpu_available:
|
|
|
|
|
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
|
|
|
|
|
mem_free_torch = mem_free_total
|
|
|
|
|
stats = torch.xpu.memory_stats(dev)
|
|
|
|
|
mem_active = stats['active_bytes.all.current']
|
|
|
|
|
mem_allocated = stats['allocated_bytes.all.current']
|
|
|
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
|
|
|
mem_free_torch = mem_reserved - mem_active
|
|
|
|
|
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated + mem_free_torch
|
|
|
|
|
else:
|
|
|
|
|
stats = torch.cuda.memory_stats(dev)
|
|
|
|
|
mem_active = stats['active_bytes.all.current']
|
|
|
|
@ -573,10 +587,10 @@ def should_use_fp16(device=None, model_params=0):
|
|
|
|
|
if directml_enabled:
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
if cpu_mode() or mps_mode() or xpu_available:
|
|
|
|
|
if cpu_mode() or mps_mode():
|
|
|
|
|
return False #TODO ?
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_bf16_supported():
|
|
|
|
|
if torch.cuda.is_bf16_supported() or xpu_available:
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
props = torch.cuda.get_device_properties("cuda")
|
|
|
|
|