Fix a few issues with the custom_nodes PR.
There only needs to be one example in the folder.main
parent
fa66ece26b
commit
1688f5024d
@ -1,87 +0,0 @@
|
||||
from utils import waste_cpu_resource
|
||||
class ExampleFolder:
|
||||
"""
|
||||
A example node
|
||||
|
||||
Class methods
|
||||
-------------
|
||||
INPUT_TYPES (dict):
|
||||
Tell the main program input parameters of nodes.
|
||||
|
||||
Attributes
|
||||
----------
|
||||
RETURN_TYPES (`tuple`):
|
||||
The type of each element in the output tulple.
|
||||
FUNCTION (`str`):
|
||||
The name of the entry-point method which will return a tuple. For example, if `FUNCTION = "execute"` then it will run Example().execute()
|
||||
OUTPUT_NODE ([`bool`]):
|
||||
WIP
|
||||
CATEGORY (`str`):
|
||||
WIP
|
||||
execute(s) -> tuple || None:
|
||||
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
|
||||
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
|
||||
"""
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
"""
|
||||
Return a dictionary which contains config for all input fields.
|
||||
The type can be a string indicate a type or a list indicate selection.
|
||||
Prebuilt types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
|
||||
Input in type "INT", "STRING" or "FLOAT" will be converted automatically from a string to the corresponse Python type before passing and have special config
|
||||
Argument: s (`None`): Useless ig
|
||||
Returns: `dict`:
|
||||
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
|
||||
- Value input_fields (`dict`): Contains input fields config:
|
||||
* Key field_name (`string`): Name of a entry-point method's argument
|
||||
* Value field_config (`tuple`):
|
||||
+ First value is a string indicate the type of field or a list for selection.
|
||||
+ Secound value is a config for type "INT", "STRING" or "FLOAT".
|
||||
"""
|
||||
return {
|
||||
"required": {
|
||||
"string_field": ("STRING", {
|
||||
"multiline": True, #Allow the input to be multilined
|
||||
"default": "Hello World!"
|
||||
}),
|
||||
"int_field": ("INT", {
|
||||
"default": 0,
|
||||
"min": 0, #Minimum value
|
||||
"max": 4096, #Maximum value
|
||||
"step": 64 #Slider's step
|
||||
}),
|
||||
#Like INT
|
||||
"print_to_screen": (["Enable", "Disable"], {"default": "Enable"})
|
||||
},
|
||||
#"hidden": {
|
||||
# "prompt": "PROMPT",
|
||||
# "extra_pnginfo": "EXTRA_PNGINFO"
|
||||
#},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("STRING", "INT", "FLOAT", "STRING")
|
||||
FUNCTION = "test"
|
||||
|
||||
#OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "Example"
|
||||
|
||||
def test(self, string_field, int_field, print_to_screen):
|
||||
rand_float = waste_cpu_resource()
|
||||
if print_to_screen == "Enable":
|
||||
print(f"""Your input contains:
|
||||
string_field aka input text: {string_field}
|
||||
int_field: {int_field}
|
||||
A random float number: {rand_float}
|
||||
""")
|
||||
return (string_field, int_field, rand_float, print_to_screen)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ExampleFolder": ExampleFolder
|
||||
}
|
||||
"""
|
||||
NODE_CLASS_MAPPINGS (dict): A dictionary contains all nodes you want to export
|
||||
"""
|
@ -1,4 +0,0 @@
|
||||
import torch
|
||||
def waste_cpu_resource():
|
||||
x = torch.rand(1, 1e6, dtype=torch.float64).cpu()
|
||||
return x.numpy()[0, 1]
|
Loading…
Reference in New Issue