|
|
|
@ -17,6 +17,14 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
|
|
|
|
|
def get_area_and_mult(cond, x_in, cond_concat_in, timestep_in):
|
|
|
|
|
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
|
|
|
|
strength = 1.0
|
|
|
|
|
if 'timestep_start' in cond[1]:
|
|
|
|
|
timestep_start = cond[1]['timestep_start']
|
|
|
|
|
if timestep_in > timestep_start:
|
|
|
|
|
return None
|
|
|
|
|
if 'timestep_end' in cond[1]:
|
|
|
|
|
timestep_end = cond[1]['timestep_end']
|
|
|
|
|
if timestep_in < timestep_end:
|
|
|
|
|
return None
|
|
|
|
|
if 'area' in cond[1]:
|
|
|
|
|
area = cond[1]['area']
|
|
|
|
|
if 'strength' in cond[1]:
|
|
|
|
@ -428,6 +436,25 @@ def create_cond_with_same_area_if_none(conds, c):
|
|
|
|
|
n = c[1].copy()
|
|
|
|
|
conds += [[smallest[0], n]]
|
|
|
|
|
|
|
|
|
|
def calculate_start_end_timesteps(model, conds):
|
|
|
|
|
for t in range(len(conds)):
|
|
|
|
|
x = conds[t]
|
|
|
|
|
|
|
|
|
|
timestep_start = None
|
|
|
|
|
timestep_end = None
|
|
|
|
|
if 'start_percent' in x[1]:
|
|
|
|
|
timestep_start = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['start_percent'] * 999.0)))
|
|
|
|
|
if 'end_percent' in x[1]:
|
|
|
|
|
timestep_end = model.sigma_to_t(model.t_to_sigma(torch.tensor(x[1]['end_percent'] * 999.0)))
|
|
|
|
|
|
|
|
|
|
if (timestep_start is not None) or (timestep_end is not None):
|
|
|
|
|
n = x[1].copy()
|
|
|
|
|
if (timestep_start is not None):
|
|
|
|
|
n['timestep_start'] = timestep_start
|
|
|
|
|
if (timestep_end is not None):
|
|
|
|
|
n['timestep_end'] = timestep_end
|
|
|
|
|
conds[t] = [x[0], n]
|
|
|
|
|
|
|
|
|
|
def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
|
|
|
|
|
cond_cnets = []
|
|
|
|
|
cond_other = []
|
|
|
|
@ -571,6 +598,9 @@ class KSampler:
|
|
|
|
|
resolve_cond_masks(positive, noise.shape[2], noise.shape[3], self.device)
|
|
|
|
|
resolve_cond_masks(negative, noise.shape[2], noise.shape[3], self.device)
|
|
|
|
|
|
|
|
|
|
calculate_start_end_timesteps(self.model_wrap, negative)
|
|
|
|
|
calculate_start_end_timesteps(self.model_wrap, positive)
|
|
|
|
|
|
|
|
|
|
#make sure each cond area has an opposite one with the same area
|
|
|
|
|
for c in positive:
|
|
|
|
|
create_cond_with_same_area_if_none(negative, c)
|
|
|
|
|